Celera Motion - A Novanta Company
English
  • Home
  • Products
    • Optical Encoders
      • Rotary Encoders
      • Linear Encoders
      • Tape and Glass Scales
      • OEM Solutions
      • Legacy Products
    • Inductive Encoders
      • IncOder Angle Encoders
      • Ultra IncOder Angle Encoders
      • OEM Rotary Position Sensors
      • OEM Linear Position Sensors
      • Custom Sensors
    • Direct Drive Motors
      • Direct Drive Rotary Motors
      • Direct Drive Linear Motors
      • Direct Drive Housed Motors
      • OEM Motor Solutions
    • Servo Drives
      • EtherCAT Servo Drives
      • CANopen Servo Drives
      • SPI Servo Drives
      • Capitan Series Servo Drives
      • Everest Series Servo Drives
    • Air Bearing Spindles
      • PCB Drilling & Routing
      • Coating Atomizer Spindles
      • Light Industrial – Precision Machining Spindles
    • Intelligent Stepper Motors
      • Liberty MDrive Rotary
      • Liberty MDrive Linear
      • MDrive Plus Rotary
      • MDrive Plus Linear
      • Intelligent Stepper Drives
    • Custom Mechatronics
    • New Motion Control Products
      • Aura series
        Aura Series
        Absolute Optical Encoder
      • Capitan Series
        Capitan Series
        Servo Drives
      • Everest S
        Everest S Series
        Servo Drives
      • Denali Servo Drives
        Denali Series
        Servo Drives
      • Omni plus
        Omni+ Series
        Direct Drive Motors
      • Ultra IncOder Series
        Ultra IncOder Series
        Inductive Encoders
      • IncOder CORE
        IncOder CORE
        Lightweight Inductive Encoders
  • Applications
    • Medical
      • Diagnostic Imaging
      • Exoskeleton Robotics
      • Inductive Encoders for Surgical Robotics
      • Laser Cataract Surgery
      • Medical Position Sensors
      • Microfluidic Dispensing
      • Radiation Therapy
      • Robotic Arm End Effector
      • Servo Drives for Surgical Robotics
      • Surgical Robotic Arm
      • UVD Robots
    • Satcom & UAV
      • Aerospace
      • Antenna Pointing Systems
      • Optronic Systems
      • Position Sensors for Cameras
      • Radar Antennas
      • Satcom On-The-Move
      • Satellite Communications
      • UAV Gimbal
    • Industrial
      • 3D Metrology for Industrial Manufacturing
      • 3D Scanning and Sensing
      • Automotive Robotic Paint Spraying Systems
      • Defense
      • Electric Vehicles (EVs)
      • Gimbal for Search and Rescue Helicopter
      • Glass Edge-Grinding of Smart Phones & Tablet Screens
      • Industrial Position Sensors
      • Large Format Printer
      • Laser Marking
      • Marine
      • Oil & Gas
      • Photonics
      • Robotic Arm
      • Rugged Encoders for Subsea Robotics
      • Servo Drives for Electric Mobility
      • Servo Drives for Industrial Robotics
      • Servo Drives for Integrated Actuators
      • Servo Drives for Subsea and Marine Robotics
      • Specialist Vehicles
    • Microelectronics
      • Inspection & Metrology
      • Multi-Axis Light Collimation System
      • Precision Photonics Stage
      • SMT Pick and Place Machine
      • Wafer Inspection
      • Wire Bonding
    • Scientific
      • Automated Microscope Stage
      • DNA Sequencing
      • Scanning Electron Microscopes
  • Technology
    • Optical Encoder Technology
    • Inductive Encoder Technology
    • Direct Drive Motor Technology
    • Stepper Motor Technology
    • Air Bearing Spindles Technology
  • Resources
    • Technical Papers
    • Video Library
    • Product Documents
    • Compliance Information
    • FAQs
    • Software Downloads
  • Company
    • About Novanta
    • About Celera Motion
    • Global Locations
    • History of Celera Motion
    • Careers
  • News
    • Latest News
    • Latest Events
    • Latest Articles
  • Contact
    • Technical Support
    • Request a Quote
    • Order Status
    • Find Local Contact
    • Warranty and Returns
  • English
Online Shop
Get a Quote
Online Shop
Home / News / Latest Articles / How Rotary Encoders Work

How Rotary Encoders Work

February 9, 2021

Encoders provide precise position feedback for both rotary and linear servo motor control, as well as accurate position information for applications. Rotary encoders are truly at the heart of high-performance automation. This article offers a detailed insight into the working principles of rotary encoders. 

Types of Rotary Encoders

Rotary encoder technologies include optical, magnetic, capacitive, and inductive. The optical encoder is preferred for applications requiring the highest resolution and accuracy. Magnetic and inductive encoders excel in harsher environments. The primary focus in this article is the rotary optical encoder.

Celera Motion has developed a suite of precision rotary encoders for cutting-edge applications. Miniature components are employed to meet the needs of the smallest electromechanical systems. The latest generation is the Aura™ Series.

How rotary encoders work

Selecting a Rotary Encoder

As mentioned, there are different types of rotary encoder technologies. The optical rotary encoder is preferred for applications requiring the highest resolution, accuracy, and repeatability. Magnetic and inductive rotary encoders excel in harsher environments, but magnetic encoders are sensitive to external magnetic fields and can suffer from accuracy drift over the specified temperature range. The remainder of this article narrows the focus to the optical rotary encoders.

Optical Rotary Encoder Theory of Operation

Rotary encoders can be incremental or absolute devices. Incremental encoders generate position change information only. An additional index/marker signal defines zero position, which is detected during a homing routine. Absolute devices provide actual physical position –  eliminating time-consuming homing, which requires movement to locate the index.

Incremental Rotary Encoders

Incremental rotary encoders employ optical scanning of a rotary scale. The scale is made of reflective and non-reflective lines of precisely equal width. Incident light from an LED creates a projection of the scale (light/dark lines) which can be detected by a photoelectric sensor. As the scale moves relative to the sensor, the lines can be counted to provide incremental position information.

Incremental rotary encoders

Incremental Rotary Scale

The number of reflective lines on the scale corresponds to the resolution of the rotary encoder. With careful design of sensor geometry, however, the variation in light intensity from line to line appears sinusoidal. This enables the generation of sinusoidal signals which can be interpolated to much higher resolution.

Left to right: A rotary scale and a linear scale

Absolute Rotary Encoders

Absolute rotary encoders also typically incorporate an incremental scale. To determine absolute position, an additional pseudo-random pattern of reflective lines is illuminated and projected to a second sensor. This essentially creates a barcode which, at startup, is used to identify a specific line on the incremental track i.e. the rotary encoder is now reading line 128 which is at exactly 43.5°.

The interface to an incremental rotary encoder is known as ABZ. A and B are square waves, phase shifted by 90°. Whether A leads B or B leads A indicates the direction of motion. The controller counts transitions on the AB signals. The Z signal is the index signal or zero reference. Absolute rotary encoders typically have a high speed synchronous serial interface such as the open standard BiSS-C.

 Installing a Modular Rotary Encoder

A modular rotary encoder solution requires that the scale disc be mounted to a hub. Ensuring the scale centre is concentric with the axis of rotation is critical to minimize angular error. Eccentricity (difference in centres of rotation) can have a significant impact on angular error. As can be seen from the following formula, the error is magnified for smaller scale discs.

Angular error = arctan (eccentricity-error/radius) degrees

For high performance applications, an eccentricity of less than 25 microns is preferred. This can be challenging and two readheads are sometimes employed to average out the error.

Eccentricity compensation using two redheads

 The sensor in the readhead must also be aligned correctly relative to the scale. Wide alignment tolerances can significantly reduce installation time, reducing production cost.

Rotary scales mounted to hubs

Aura™ Series Rotary Encoders

Celera Motion Aura™ ­­Series rotary encoders provide 18 to 22 bit resolution, corresponding to as many as 4,194,304 discrete positions per rotation. Accuracy is ± 0.01 degree. The small format encoder is also easy to install with wide alignment tolerances. This Celera Motion rotary encoder delivers advanced features including scale eccentricity compensation, eliminating the potential need for two averaging readheads.

Looking for rotary encoders?

Aura™ Series rotary encoders consume minimal power. Comprehensive connectivity includes low-latency BiSS-C as well as SSI and SPI. An incremental ABZ output with configurable resolution adds additional interfacing flexibility.

Aura™ Series Encoders

Aura™ Absolute Optical Rotary Encoder

Want to learn more? Contact a member of the Celera Motion team today to learn about our new flagship absolute rotary encoder.

 

 

  • Share:
Recent News
  • Celera Motion Launches World’s First Platform to Simplify PCB Design Work for Robotic Solutions
    March 16, 2023
  • Celera Motion Introduces World’s Smallest Servo Drives
    January 31, 2023
  • Robotics Summit & Expo, 2023
    December 7, 2022
  • 5 Tips for Using Servo Drives in Exoskeleton Robots
    December 7, 2022
  • Rotary Encoders for Harsh Environments
    December 2, 2022
Question Mark IconAsk a Question
Sales Partner IconSales Partners
Newsletter IconNewsletter Sign-up
    • Company
    • Contact
    • Global Locations
    • Find Local Contact
    • Careers
    • Latest News & Events
    • Motion Control Products
    • Optical Encoders
    • Inductive Encoders
    • Direct Drive Motors
    • Servo Drives
    • Intelligent Stepper Motors
    • Air Bearing Spindles
    • Mechatronics
    • Applications
    • Medical
    • Satcom & UAV
    • Industrial
    • Microelectronics
    • Scientific
    • Resources
    • Video Library
    • Technical Papers
    • Compliance Information
    • FAQs
    • Legacy Products
Novanta

Novanta is a trusted technology partner to original equipment manufacturers in the medical and advanced industrial technology markets. The Company provides innovative and enabling solutions with photonics, vision, and precision motion technologies. Novanta's common shares are quoted on NASDAQ under the ticker symbol "NOVT.

  • ©2023 Celera Motion, a Novanta Company | Privacy Policy | Terms of Use | Sales Terms and Conditions | Purchasing Terms and Conditions | CCPA | EEO
Go to Top

This website uses cookies to provide you with the best user experience and site functionality, and provides us with enhanced site analytics. By continuing to view this site without changing your web browser settings, you agree to our use of cookies. To learn more, please view our privacy policy.