Celera Motion - A Novanta Company
English
  • Home
  • Products
    • Optical Encoders
      • Rotary Encoders
      • Linear Encoders
      • Tape and Glass Scales
      • OEM Solutions
      • Legacy Products
    • Inductive Encoders
      • IncOder Angle Encoders
      • Ultra IncOder Angle Encoders
      • OEM Rotary Position Sensors
      • OEM Linear Position Sensors
      • Custom Sensors
    • Direct Drive Motors
      • Direct Drive Rotary Motors
      • Direct Drive Linear Motors
      • Direct Drive Housed Motors
      • OEM Motor Solutions
    • Servo Drives
      • EtherCAT Servo Drives
      • CANopen Servo Drives
      • SPI Servo Drives
      • Capitan Series Servo Drives
      • Everest Series Servo Drives
    • Air Bearing Spindles
      • PCB Drilling & Routing
      • Coating Atomizer Spindles
      • Light Industrial – Precision Machining Spindles
    • Intelligent Stepper Motors
      • Liberty MDrive Rotary
      • Liberty MDrive Linear
      • MDrive Plus Rotary
      • MDrive Plus Linear
      • Intelligent Stepper Drives
    • Custom Mechatronics
    • New Motion Control Products
      • Aura series
        Aura Series
        Absolute Optical Encoder
      • Capitan Series
        Capitan Series
        Servo Drives
      • Everest S
        Everest S Series
        Servo Drives
      • Denali Servo Drives
        Denali Series
        Servo Drives
      • Omni plus
        Omni+ Series
        Direct Drive Motors
      • Ultra IncOder Series
        Ultra IncOder Series
        Inductive Encoders
      • IncOder CORE
        IncOder CORE
        Lightweight Inductive Encoders
  • Applications
    • Medical
      • Diagnostic Imaging
      • Exoskeleton Robotics
      • Inductive Encoders for Surgical Robotics
      • Laser Cataract Surgery
      • Medical Position Sensors
      • Microfluidic Dispensing
      • Radiation Therapy
      • Robotic Arm End Effector
      • Servo Drives for Surgical Robotics
      • Surgical Robotic Arm
      • UVD Robots
    • Satcom & UAV
      • Aerospace
      • Antenna Pointing Systems
      • Optronic Systems
      • Position Sensors for Cameras
      • Radar Antennas
      • Satcom On-The-Move
      • Satellite Communications
      • UAV Gimbal
    • Industrial
      • 3D Metrology for Industrial Manufacturing
      • 3D Scanning and Sensing
      • Automotive Robotic Paint Spraying Systems
      • Defense
      • Electric Vehicles (EVs)
      • Gimbal for Search and Rescue Helicopter
      • Glass Edge-Grinding of Smart Phones & Tablet Screens
      • Industrial Position Sensors
      • Large Format Printer
      • Laser Marking
      • Marine
      • Oil & Gas
      • Photonics
      • Robotic Arm
      • Rugged Encoders for Subsea Robotics
      • Servo Drives for Electric Mobility
      • Servo Drives for Industrial Robotics
      • Servo Drives for Integrated Actuators
      • Servo Drives for Subsea and Marine Robotics
      • Specialist Vehicles
    • Microelectronics
      • Inspection & Metrology
      • Multi-Axis Light Collimation System
      • Precision Photonics Stage
      • SMT Pick and Place Machine
      • Wafer Inspection
      • Wire Bonding
    • Scientific
      • Automated Microscope Stage
      • DNA Sequencing
      • Scanning Electron Microscopes
  • Technology
    • Optical Encoder Technology
    • Inductive Encoder Technology
    • Direct Drive Motor Technology
    • Stepper Motor Technology
    • Air Bearing Spindles Technology
  • Resources
    • Technical Papers
    • Video Library
    • Product Documents
    • Compliance Information
    • FAQs
    • Software Downloads
  • Company
    • About Novanta
    • About Celera Motion
    • Global Locations
    • History of Celera Motion
    • Careers
  • News
    • Latest News
    • Latest Events
    • Latest Articles
  • Contact
    • Technical Support
    • Request a Quote
    • Order Status
    • Find Local Contact
    • Warranty and Returns
  • English
Online Shop
Get a Quote
Online Shop
Home / News / Latest Articles / Positioning Systems for Satellite Communication

Positioning Systems for Satellite Communication

April 27, 2021
Positioning Systems for Satellite Communication

Satellite communication plays a fundamental role in our interconnected global network. Most operational satellites use positioning systems that make these communications possible. These positioning systems are located in different parts throughout the satellite system. Utilizing reliable positioning allows an immense range of data-driven applications, including budding 5G networks and Internet of Things (IoT) connectivity, to be possible.

More satellites are launched into low earth orbit (LEO), medium earth orbit (MEO), and geostationary orbit (GEO) year-over-year.  This, among other trends for satellite communications, generates pressure on designers, including increased production of LEO satellites to reduce signal latency.

Satellite Communications

Commercial satellites orbit at altitudes of 160 – 35,786 km from the earth. This exceptionally wide scale covers all three orbital ranges; LEO, MEO, and GEO. Geostationary, or geosynchronous, satellites are preferred for communications applications as they are positioned above the Van Allen radiation belt, which can prove inhospitable to sensitive electrical components. However, it takes approximately 0.22 seconds for satellites in geosynchronous orbit to relay signals, which creates a perceptible latency.

LEO satellites orbit earth at the closest altitudes, which simultaneously reduces latency and coverage. While it takes only a few GEO satellites to provide worldwide coverage, numerous interconnected LEO systems, using careful telemetric components and ground-level antenna pointing systems (APSs), are required to reach such communication levels. However, LEO networks represent an exciting frontier for low latency 5G broadband with widespread interconnectivity.

One of the primary challenges from a satellite communications design perspective is the need for automated APSs that can track the positions of LEO satellites accurately and fast. This may require a mobile solution for example, such as Satcom-on-the-Move (SOTM) APSs for air, land and sea. However, these systems are exposed to harsh atmosphere conditions including moisture, extreme temperatures, dust and several contaminants, such as oil or sand, which are a pervasive risk.

Positioning Systems for Satellite CommunicationIf Satcom companies are to take advantage of the new horizon of LEO interconnectivity, they must overcome the above-mentioned challenges – designing powerful and robust systems and solving ground issues, such as motion-induced errors in APSs mounted on marine vessels.

Positioning Systems

Due to the number of satellites being designed for orbits like LEO, APS has become an aggressive market. The ultimate decision when selecting a particular APS will depend mostly on its performance tracking and pointing a particular satellite/constellation.

Most APSs require at least two degrees of freedom (DOF) of motion. These two DOF are mainly the azimuth and elevation axis of a gimbal, performing the mechanical steering of an APS. Some APSs require a three or more DOF, depending on the frequency band and location of the terminal. An antenna dish will normally be mounted on that gimbal, to perform the above-mentioned operations. The precision obtained by the gimbal will directly affect the gain and pointing accuracy of the APS.

There are many parameters that will affect the performance of the APS, controlled by the design at a system level. One of the most important factors that will play a significant role in the overall performance of the APS is the quality and precision of the motion-related components on the mechanical steering system, especially because these are very difficult to change once the design has been completed.

APS Components from Celera Motion

Celera Motion offers a suite of high-accuracy components for reliable positioning in antenna pointing systems. The Ultra IncoderTM Series of rotary encoders are non-contact inductive angle encoders designed specifically for use in harsh environments, exceling at precise angle measurements with up to 22-bits resolution. This enables high pointing accuracies for Very Small Aperture Terminals (VSAT) with MIL-standard shock and vibration performance, providing admirable resistance to motion-induced challenges.

These low format encoders are also optimized for reliability under fluctuating temperatures. High EMI-immunity and low radiated emissions allows a strong output signal to be packed closely to other navigation equipment that can normally be sensitive to radiated emissions. This high EMI-immunity can allow a smaller footprint, tight package design – keeping all communication equipment in one location.

Inductive Sensor for Satcom

Indutive Sensor for Satcom

Celera Motion has also provided a range of positioning systems suited for lightweight, energy-efficient systems. Read this application story on satellite communications for details.

Interested in learning more about our Satcom-grade rotary encoders? Our Ultra Incoders are available in Mini (37 – 58 mm OD) and Midi (75 – 300 mm OD) sizes to suit varied end-user configurations. Contact us for more details on integrating our best-in-class rotary encoders for your satellite communications system.

[Source: World Economic Forum]

 

  • Share:
Recent News
  • Celera Motion Launches Innovative Inductive Encoder Solution for Automation in Extreme Conditions
    March 30, 2023
  • Celera Motion Launches World’s First Platform to Simplify PCB Design Work for Robotic Solutions
    March 16, 2023
  • Celera Motion Introduces World’s Smallest Servo Drives
    January 31, 2023
  • Robotics Summit & Expo, 2023
    December 7, 2022
  • 5 Tips for Using Servo Drives in Exoskeleton Robots
    December 7, 2022
Question Mark IconAsk a Question
Sales Partner IconSales Partners
Newsletter IconNewsletter Sign-up
    • Company
    • Contact
    • Global Locations
    • Find Local Contact
    • Careers
    • Latest News & Events
    • Motion Control Products
    • Optical Encoders
    • Inductive Encoders
    • Direct Drive Motors
    • Servo Drives
    • Intelligent Stepper Motors
    • Air Bearing Spindles
    • Mechatronics
    • Applications
    • Medical
    • Satcom & UAV
    • Industrial
    • Microelectronics
    • Scientific
    • Resources
    • Video Library
    • Technical Papers
    • Compliance Information
    • FAQs
    • Legacy Products
Novanta

Novanta is a trusted technology partner to original equipment manufacturers in the medical and advanced industrial technology markets. The Company provides innovative and enabling solutions with photonics, vision, and precision motion technologies. Novanta's common shares are quoted on NASDAQ under the ticker symbol "NOVT.

  • ©2023 Celera Motion, a Novanta Company | Privacy Policy | Terms of Use | Sales Terms and Conditions | Purchasing Terms and Conditions | CCPA | EEO
Go to Top

This website uses cookies to provide you with the best user experience and site functionality, and provides us with enhanced site analytics. By continuing to view this site without changing your web browser settings, you agree to our use of cookies. To learn more, please view our privacy policy.